82 research outputs found

    Free complement and complement containing extracellular vesicles as potential biomarkers for neuroinflammatory and neurodegenerative disorders

    Get PDF
    The complement system is implicated in a broad range of neuroinflammatory disorders such as Alzheimer’s disease (AD) and multiple sclerosis (MS). Consequently, measuring complement levels in biofluids could serve as a potential biomarker for these diseases. Indeed, complement levels are shown to be altered in patients compared to controls, and some studies reported a correlation between the level of free complement in biofluids and disease progression, severity or the response to therapeutics. Overall, they are not (yet) suitable as a diagnostic tool due to heterogeneity of reported results. Moreover, measurement of free complement proteins has the disadvantage that information on their origin is lost, which might be of value in a multi-parameter approach for disease prediction and stratification. In light of this, extracellular vesicles (EVs) could provide a platform to improve the diagnostic power of complement proteins. EVs are nanosized double membrane particles that are secreted by essentially every cell type and resemble the (status of the) cell of origin. Interestingly, EVs can contain complement proteins, while the cellular origin can still be determined by the presence of EV surface markers. In this review, we summarize the current knowledge and future opportunities on the use of free and EV-associated complement proteins as biomarkers for neuroinflammatory and neurodegenerative disorders

    Mouse models of ageing and their relevance to disease

    Get PDF
    Ageing is a process that gradually increases the organism’s vulnerability to death. It affects different biological pathways, and the underlying cellular mechanisms are complex. In view of the growing disease burden of ageing populations, increasing efforts are being invested in understanding the pathways and mechanisms of ageing. We review some mouse models commonly used in studies on ageing, highlight the advantages and disadvantages of the different strategies, and discuss their relevance to disease susceptibility. In addition to addressing the genetics and phenotypic analysis of mice, we discuss examples of models of delayed or accelerated ageing and their modulation by caloric restriction

    An acute phase protein ready to go therapeutic for sepsis

    Get PDF
    While APP are well-known inflammation biomarkers, A2MG found in sepsis patients' sera within lipid microparticles is an essential player in the host response to sepsis and has diagnostic as well as therapeutic potentials.image

    With mouse age comes wisdom : a review and suggestions of relevant mouse models for age-related conditions

    Get PDF
    Ageing is a complex multifactorial process that results in many changes in physiological changes processes that ultimately increase susceptibility to a wide range of diseases. As such an ageing population is resulting in a pressing need for more and improved treatments across an assortment of diseases. Such treatments can come from a better understanding of the pathogenic pathways which, in turn, can be derived from models of disease. Therefore the more closely the model resembles the disease situation the more likely relevant the data will be that is generated from them. Here we review the state of knowledge of mouse models of a range of diseases and aspects of an ageing physiology that are all germane to ageing. We also give recommendations on the most common mouse models on their relevance to the clinical situations occurring in aged patients and look forward as to how research in ageing models can be carried out. As we continue to elucidate the pathophysiology of disease, often through mouse models, we also learn what is needed to refine these models. Such factors can include better models, reflecting the ageing patient population, or a better phenotypic understanding of existing models

    Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles

    Get PDF
    Here, we identified release of extracellular vesicles (EVs) by the choroid plexus epithelium (CPE) as a new mechanism of blood-brain communication. Systemic inflammation induced an increase in EVs and associated pro-inflammatory miRNAs, including miR-146a and miR-155, in the CSF. Interestingly, this was associated with an increase in amount of multivesicular bodies (MVBs) and exosomes per MVB in the CPE cells. Additionally, we could mimic this using LPS-stimulated primary CPE cells and choroid plexus explants. These choroid plexus-derived EVs can enter the brain parenchyma and are taken up by astrocytes and microglia, inducing miRNA target repression and inflammatory gene up-regulation. Interestingly, this could be blocked in vivo by intracerebroventricular (icv) injection of an inhibitor of exosome production. Our data show that CPE cells sense and transmit information about the peripheral inflammatory status to the central nervous system (CNS) via the release of EVs into the CSF, which transfer this pro-inflammatory message to recipient brain cells. Additionally, we revealed that blockage of EV secretion decreases brain inflammation, which opens up new avenues to treat systemic inflammatory diseases such as sepsis

    Microglial activation arises after aggregation of phosphorylated-tau in a neuron-specific P301S tauopathy mouse model

    Get PDF
    Alzheimer's disease, progressive supranuclear palsy and frontotemporal dementia are characterized by neuronal expression of aberrant tau protein, tau hyperphosphorylation (pTAU), tau aggregation and neurofibrillary tangle formation sequentially culminating into neuronal cell death, a process termed tauopathy. Our aim was to address at which tauopathy stage neuroinflammation starts and to study the related microglial phenotype. We used Thy1-hTau.P301S (PS) mice expressing human tau with a P301S mutation specifically in neurons. Significant levels of cortical pTAU were present from 2 months onwards. Dystrophic morphological complexity of cortical microglia arose after pTAU accumulation concomitant with increased microglial lysosomal volumes and a significant loss of homeostatic marker Tmem119. Interestingly, we detected increases in neuronal pTAU and postsynaptic structures in the lysosomes of PS microglia. Moreover, the overall cortical postsynaptic density was decreased in 6-month-old PS mice. Together, our results indicate that microglia adopt a pTAU-associated phenotype, and are morphologically and functionally distinct from wild-type microglia after neuronal pTAU accumulation has initiated

    Matrix metalloproteinase 13 modulates intestinal epithelial barrier integrity in inflammatory diseases by activating TNF

    Get PDF
    Several pathological processes, such as sepsis and inflammatory bowel disease (IBD), are associated with impairment of intestinal epithelial barrier. Here, we investigated the role of matrix metalloproteinase MMP13 in these diseases. We observed that MMP13(-/-) mice display a strong protection in LPS- and caecal ligation and puncture-induced sepsis. We could attribute this protection to reduced LPS-induced goblet cell depletion, endoplasmic reticulum stress, permeability and tight junction destabilization in the gut of MMP13(-/-) mice compared to MMP13(+/+) mice. Both in vitro and in vivo, we found that MMP13 is able to cleave pro-TNF into bioactive TNF. By LC-MS/MS, we identified three MMP13 cleavage sites, which proves that MMP13 is an alternative TNF sheddase next to the TNF converting enzyme TACE. Similarly, we found that the same mechanism was responsible for the observed protection of the MMP13(-/-) mice in a mouse model of DSS-induced colitis. We identified MMP13 as an important mediator in sepsis and IBD via the shedding of TNF. Hence, we propose MMP13 as a novel drug target for diseases in which damage to the gut is essential

    Endothelial LRP1 transports amyloid-β1-42 across the blood-brain barrier

    Get PDF
    According to the neurovascular hypothesis, impairment of low-density lipoprotein receptor-related protein-1 (LRP1) in brain capillaries of the blood-brain barrier (BBB) contributes to neurotoxic amyloid-beta (A beta) brain accumulation and drives Alzheimer's disease (AD) pathology. However, due to conflicting reports on the involvement of LRP1 in A beta transport and the expression of LRP1 in brain endothelium, the role of LRP1 at the BBB is uncertain. As global Lrp1 deletion in mice is lethal, appropriate models to study the function of LRP1 are lacking. Moreover, the relevance of systemic A beta clearance to AD pathology remains unclear, as no BBB-specific knockout models have been available. Here, we developed transgenic mouse strains that allow for tamoxifen-inducible deletion of Lrp1 specifically within brain endothelial cells (Slo1c1-CreER(Tz) Lrp1(fl/fl) mice) and used these mice to accurately evaluate LRP1-mediated A beta BBB clearance in vivo. Selective deletion of Lrp1 in the brain endothelium of C57BL/6 mice strongly reduced brain efflux of injected [I-125] A beta(1-42). Additionally, in the 5xFAD mouse model of AD, brain endothelial-specific Lrp1 deletion reduced plasma A beta levels and elevated soluble brain A beta, leading to aggravated spatial learning and memory deficits, thus emphasizing the importance of systemic AD elimination via the BBB. Together, our results suggest that receptor-mediated A beta BBB clearance may be a potential target for treatment and prevention of A beta brain accumulation in AD
    corecore